
 Beginner’s Computer Programming
 Guide (Language-Agnostic)

 Presented by:

 Table of Contents

 Preface 3
 I. Introduction 4
 II. Fundamentals 4

 Variables 4
 Data Types 5
 Functions 6

 Parameters 8
 Classes / Objects 10

 III. Types of Languages 11
 Static 11
 Dynamic 11

 IV. Object-Oriented Programming (OOP) 12
 Creating an instance 12
 Manipulating an instance 12

 V. Data Structures 14
 Array 14

 Length / Size 14
 Indexing 14

 List / ArrayList 15
 Set / HashSet 17
 Dictionary / HashMap 17

 VI. Algorithms 19
 Conditionals 19
 Looping 20

 1. For-loop 20
 2. For-each loop 22
 3. While-loop 22

 E�ciency 23
 Best vs Worst case 26

 VII. Ge�ing Started with Projects 27
 GitHub 27

 Collaboration 27
 VIII. Guided Practice 28

 Download an IDE [JGrasp] 28
 Commit to a language [Java] 28

 1

 Create a new program 28
 1. Creating a new file 28
 2. Saving the file 28

 Start Coding! 28
 IX. Links & Resources 29

 General 29
 Command Line / Terminal 29
 App Development 29
 Arti�cial Intelligence (AI) 29
 Hardware Engineering / Robotics 29
 Cybersecurity 29
 Interview-based Practice 29

 X. Works Cited 30

 2

 Preface
 Firstly, I want to say thank you for supporting the SSF by giving this guide a read.

 For some short history, SSF was founded in 2021, and has been dedicated since then to give
 underrepresented people a fair chance at competing in the tech world. The Snell Scholarship
 Foundation’s mission is to “increase retention of colored children studying STEM through
 scholarships and mentorship”. Two of the main pain points in carrying out a mission like this are
 (1) ge�ing students interested in tech to begin with and (2) ge�ing the interested students to
 stay in tech, even when it gets rough (because trust me, it will get rough).

 As Founder of SSF, I’ve continually explored new avenues to increasing retention outside of our
 existing methods like o�ering scholarships and mentorship. The key piece that’s been missing
 from this puzzle is �nding a way to get more people interested in tech, which will hopefully
 lead to more tech majors, and subsequently more people pursuing professional roles in tech.

 We’ve realized, this whole plan starts with education and awareness, and le�ing people know
 that if I can do it, so can you. Coding can de�nitely be a nightmare, but it doesn’t have to be.
 Just like anything else in life, preparation, study, and con�dence can take us a long way. The
 purpose of this book, document, whatever we want to call it, will be to plant those 3 very
 seeds. This guide will provide readers with an engagement-based crash course that steps
 through all of the fundamentals of programming to paint a more vivid picture of what coding
 is.

 We won’t go into too much detail about using these constructs in a practical sense, like how to
 build a website or an app, but we’ll de�nitely go over the skills needed to do those things.

 That said, let’s lock in and get ready for this journey to become [be�er] programmers together!

 Donnell Debnam Jr., Founder
 Snell Scholarship Foundation, Inc.
 Email: snellscholars@gmail.com
 O�cial Website: snellscholars.org

 3

mailto:snellscholars@gmail.com
http://snellscholars.org/

 I. Introduction
 As computer programmers, coding is what we use to communicate with our machines to give
 them a set of instructions to follow. Machines themselves rely on us to program them and in
 some cases (like in AI), teach them how to “think”. When we think of an app or even a website,
 all it is is a set of instructions that someone gave to a machine to say, “Hey, show a screen that
 looks like this, and when a user taps on this, do this, but if this other condition is also true, do
 this other thing instead” ... or, at least it normally goes something like that.

 Programming comes in many di�erent forms and has a bunch of di�erent purposes, but all
 forms of it use the same basis and set of fundamental practices. The idea is that the code we
 write as engineers is just a ton of data being consolidated and operated on, and then typically
 gets shown to a user in some fancy way called a UI, or user interface.

 Throughout this guide, we will build a foundation of how to write simple programs using all of
 the low-level programming constructs to give us the tools to build anything… well, almost
 anything, lol.

 P.S: As a small reminder, this is a language-agnostic guide, so we will not focus on any one
 speci�c programming language; the tools we’ll acquire via this book will be applicable to all
 modern languages!

 II. Fundamentals
 To get started with programming in general, you’ll want to be �rm upon your fundamental
 constructs like using variables, data types, functions, etc. These are essentially the “building
 blocks” that you’ll use to create things like apps, local programs, scripts, or even data models
 with Python or R.

 Let’s break down each of the core fundamentals:

 Variables
 Variables are the simplest form of programming and are used in just about every programming
 language known to us. A variable is essentially just a piece of data. This data can be a
 number, a word, anything. In programming though, we name these variables and assign them a
 value so that anytime we need the values in the future, we can reference the names that we
 assigned to then get the values:

 var name = “John Doe”

 var age = 21

 In the above segment, we create 2 variables: one called name which holds a value of “John
 Doe” and one called age which holds a numeric value of 21 . Now, any time we want either of
 these values, we could just reference them by the name we assigned:

 4

 print (name) // prints “Jonn Doe”

 print (age) // prints 21

 The segment above is printing the values that are currently stored in the two variables we
 created. When we say “print”, we mean that we’re sending some text or other content to our
 machine’s screen. These results are typically sent to the same place where the code is run
 from, either an IDE or from the machine’s command line.

 Data Types
 Building o� of the last section, we’ll focus now on data types. These are speci�c types for
 the variables we create to tell the machine how to understand the variables and their values.

 Using the former example, we can update our code to explicitly state the type of the variable
 so that (1) the machine has an easier time understanding the code and (2) other human readers
 of the code understand exactly what type each variable is:

 var name: String = “John Doe”

 var age: Int = 21

 In the above segment we have altered the 2 variables to explicitly declare a data type; name is
 of type String and age is of type Int , which is short for integer, which represents a number.

 Here is a breakdown of the main data types that we have in programming:

 Data Type Explanation Example(s)

 Integer A numeric value without a decimal; any whole number that
 is positive, negative or zero

 0 , 2 , 33 , -199

 Float All integer numbers that exist to in�nity, plus all of their
 fractions and decimals

 1.26 , -7.8

 Double A more precise �oat (double = 64 bits, �oat = 32 bits) 1.26735125

 Char /
 Character

 A single alphanumeric value; any le�er, number or symbol
 that can be typed

 ‘A’ , ‘g’ , ‘3’ ,
 ‘/’

 String A list of characters of any length; can be null (empty), just
 one character, or many characters

 “Hello” , “ ”

 Boolean True or false value, typically used as a �ag for binary
 relationships (i.e. on / o�, yes / no)

 true , false

 More on data types here .

 5

https://www.programiz.com/c-programming/c-data-types

 Functions
 Functions are where programming starts to get fun and creative. A function (AKA a “method”)
 is essentially an organized set of instructions for the machine to follow. Normally a function is
 created to do one speci�c job and should typically be as concise as possible.

 We don’t always necessarily need functions, as we could just write out each line of code within
 it by hand each time we need it, but functions are named just like variables, so that whenever
 we want to reference those speci�c lines of code again, we can reference the function by
 name, just like variables.

 Check out this example. Let’s say we have the same variables, name and age , and we want to
 print out the values. Then, we change the values assigned to those variables, and we want to
 print the data again:

 // Create some variables and assign them values

 var name: String = “John Doe”

 var age: Int = 21

 // Print the current values

 print (name) // prints “Jonn Doe”

 print (age) // prints 21

 // Change the values

 // Notice when we change the values, we don’t need to use keywords “var”

 // and add a data type because the variables already exist!

 name = “Donald Glover”

 age = 39

 // Print the current values

 print (name) // prints “Donald Glover”

 print (age) // prints 39

 In the above segment, peep how we changed the values and printed all of the data again. Here,
 we didn’t need a function because we only have 2 variables of data which makes printing them
 individually pre�y easy. Imagine we had 50 variables though and we wanted to change some
 values and print all of them again. Would we really want to write 50 print statements again and
 again?

 The answer is no, lol. We can instead create a “function” which prints all of the values anytime
 we call the function:

 6

 // Create some variables and assign them values

 var name: String = “John Doe”

 var age: Int = 21

 // Print the current values

 print (name) // prints “Jonn Doe”

 print (age) // prints 21

 // Change/override the values

 // Notice when we change the values, we don’t need to use keywords “var”

 // and add a data type because the variables already exist!

 name = “Donald Glover”

 age = 39

 // A function called “printAllData”

 fun printAllData() {

 print (name) // prints the current value of “name”

 print (age) // prints the current value of “age”

 }

 // Print the current values

 printAllData() // this is how we call the function

 printAllData() // this is us calling the function again

 …

 printAllData() // this is us calling the function, yet again

 Things to note here:

 ● We created a function named printAllData() which can print the value of name and
 age

 ● We called the function multiple times to illustrate how easy it is to repeat all of the
 instructions of the function without needing to write out everything within it

 Functions become super important in larger scale programs because we get to de�ne the
 logic once, and then use it as many times as we need throughout di�erent apps and �les.

 I want to give another example to really show how valuable functions are. They aren’t just
 routines; they’re also constructs that help us to be�er conceptualize logic in our code, which
 becomes huge in the debugging realm. For example, let’s say we have a program that has a
 bunch of computations in it, like mathematical computations. Somewhere in the code we see
 the following:

 7

 if (((y2 - y1) / (x2 - x1)) > 0) { … }

 If we’re paying close enough a�ention, we might notice that that’s actually the slope formula ,
 but this probably wouldn’t be that obvious to everyone reading the code, especially if there are
 a bunch of other hidden formulas in the code too. Functions in this case can be handy because
 they are named by the user, typically in a way that makes its purpose obvious to people who
 might read or use this code.

 Instead of having that code how it is in the segment, we could rewrite it using a function like
 so:

 // Function to find the slope of a line.

 fun slope () {

 return (y2 - y1) / (x2 - x1);

 }

 So that way, anytime we want to use the slope formula, we can just call that function where
 needed, and it will return a speci�c value:

 if (slope() > 0) { … }

 Now reading that in English, we would have something like, “If the slope is greater than 0, then
 …” which makes the code a lot easier to follow and understand.

 Oh – and while we’re here, we might as well talk about function parameters too � .

 Parameters

 Parameters are constructs within the function paradigm that help us make functions more
 dynamic and reusable. Let’s say we have the following code:

 // Some variables we’ll use for computing

 var x1 = 10

 var x2 = 4

 var y1 = 7

 var y2 = 3

 // Function to find the slope of a line.

 fun slope () {

 return (y2 - y1) / (x2 - x1);

 }

 8

 This is a valid segment of code, in which whenever we call the slope() function, it would use
 the same values for x1 , x2 , y1 , and y2 . This isn’t necessarily an issue, but it con�nes this
 function to only being able to �nd the slope of those speci�c variables, unless the values are of
 course manually changed at some point and we call the function again.

 To improve this, we can tell this function to accept parameters , or inputs to the function .
 When we add parameters to a function, the function itself basically gets some temporary input
 values to use throughout the course of the function to do computation, instead of relying on
 some existing values. We could rewrite the slope function like so:

 // Function to find the slope of a line.

 fun slope (x1, x2, y1, y2) {

 return (y2 - y1) / (x2 - x1);

 }

 And what this does is, (1) uses the input values to do the computation, (2) returns the result of
 calculating the slope, (3) then essentially forgets about those temporary input values, because
 they were only inputs to the function.

 So to really drive this idea home, let’s think of how we could change the way we use this
 function, now that it uses parameters:

 slope(10 , 4 , 7 , 3) // returns 0.6667

 slope(2 , 5 , 6 , 9) // returns 1.0

 Things to note here:

 ● Instead of needing variables with assigned values for the function to use, we can just
 pass numeric values directly to the function as parameters, and those values will be
 used for the computation

 ● We aren’t forced to use variables or direct values as parameters; we have the option to
 use either or, as long as (1) the number of inputs matches and (2) the data type of the
 values match

 ○ Since we declared our function to take in 4 inputs (x1 , x2 , y1 , and y2), whenever
 we call this speci�c function, we must always provide 4 values as inputs

 ○ Each input is ordered in the sense that the �rst provided input will be used as x1 ,
 the second will be x2 , the third will be y1 , and the last will be y2

 More on functions with parameters here .

 9

https://www.youtube.com/watch?v=k7Ji1E97-V0

 Classes / Objects
 On to classes. Classes are templates, consisting of variables and functions, which help us
 to organize the code we write and also group related things together.

 For example, the below segment is how we could de�ne a simple class, Person , which has two
 properties: a name and an age . It also has two functions: getName() and getAge() which we
 can use to get the values of those variables:

 class Person {

 /** Member variables */

 var name: String

 var age: Int

 /** Member functions */

 // Returns the Person’s name

 fun getName (): String { return name }

 // Returns the Person’s age

 fun getAge (): Int { return age }

 }

 Notice how logically, we know a person has properties like a name and an age, that’s why our
 approach to programming such a class follows the same pa�ern. Typically classes are very
 idiomatic as well in the sense that the variables and functions within a class should match the
 theme or purpose of the class itself.

 Things to note here:

 ● Typically, classes have two main parts: (1) member/class variables and (2) member/class
 functions; we use the term “member” to indicate that these things are part of some
 larger construct, i.e. the class

 ● Classes get much trickier, but we’ll go into detail about how in the Object Oriented
 Programming (OOP) section

 More on classes here .

 10

https://www.youtube.com/watch?v=8yjkWGRlUmY

 III. Types of Languages
 There are two primary types of languages, with respect to the data we’re handling. These two
 types are static and dynamic languages.

 The di�erentiating factor in these two types is that static languages need to know the type of
 the variable when all of the code is being compiled, whereas dynamic languages typically know
 how to infer the data type, or will throw some sort of error if it can’t.

 Static languages o�en use a “compiler” to convert all of the code we write to machine
 language, and then let the machine carry out the instructions we gave it. This compiler is
 extremely sensitive, and won’t be able to properly compile our code if for example, data types
 aren’t used correctly.

 Let’s talk more about these types…

 Static
 “Static” languages are languages that require the programmer to specify the data type of the
 variables and functions they create. Some examples of these languages are C++ and Java .
 The compiler will not understand the code you’ve wri�en in those languages if you do not
 specify a type for variables and function return types.

 Dynamic
 On the other hand, we have dynamic languages. The most popular of this family is Python.
 These languages allow us to keep our code far more concise and generic, and o�en use an
 “interpreter” to understand the code.

 We can de�ne a variable, myVariable in Python 3 like so:

 myVariable = 3

 Which would be interpreted by Python as an integer because it is a numeric value within the int
 range. However, we never explicitly stated that this is an integer. This is because Python
 interprets the code, rather than compiling exactly what you told it, like we see in languages like
 Java or C++. So, this means we could later change that value to something completely
 di�erent:

 // Changing the variable’s value

 myVariable = “ New value” // this value is now a String, not an Int

 11

 This is completely legal in Python; any variable can be any value at any time. However in Java or
 any static-typed language, once we state the data type of said variable, it can never hold a
 value of another type because it would not be understood by the compiler.

 More on static and dynamic languages here .

 IV. Object-Oriented Programming (OOP)
 OOP is a very popular style of programming, which leverages “objects”. Objects are simply an
 idiomatic construct of programming in which the classes we create are operated on in what
 we call “instances”.

 Creating an instance

 I know the beginning of this section was probably a bit confusing, so let’s look at an example.
 Imagine we have the same Person class from the “Classes / Objects” section. In order to use
 that class, we would plug that logic into some other class (eg. Test) like so:

 P.S: We’ll be using Java for this section just to get an understanding of how these things work,
 but this concept applies to all object-oriented languages and should only vary in syntax.

 Test.java :

 class Test {

 // Create an “instance” of the [Person] class

 Person me = new Person () // this creates the object instance

 …

 }

 Here, we created a new object called me , which has a type of Person ; formerly all of the types
 we used for variables were primitive, but the classes we create can be types as well! The same
 logic would apply if our original class was called Vehicle and we wanted to create instances of
 that; we’d probably create an object named truck , car , motorcycle , etc., because they would
 be logically considered instances of a vehicle.

 Manipulating an instance

 In OOP, we operate on instances by (1) overriding the member variables directly and/or (2)
 calling the member functions. For example the Person class has two variables, right: name and
 age . It also has two functions: getName() and getAge() . Follow me through this quick
 example.

 12

http://educative.io/answers/statically-v-dynamically-v-strongly-v-weakly-typed-languages

 Let’s say we want to change this instance’s name and age to be “John Doe” and 21 ; we could
 do so like this:

 Test.java :

 class Test {

 // Create an “instance” of the [Person] class

 Person me = new Person () // this creates the object instance

 // Update the name and age

 me.name = “John Doe” // this changes the name

 me.age = 21 // this changes the age

 }

 Note that the work we just did only uses the variables of the class, not any of the functions. If
 we want to call the functions, let’s say to print these values that we just set, we could do so like
 so:

 Test.java :

 class Test {

 // Create an “instance” of the [Person] class

 Person me = new Person ()

 // Update the name and age

 me.name = “ John Doe ”

 me.age = 21

 // Get and print the values using member functions

 var myName = me.getName() // returns “John Doe”

 var myAge = me.getAge() // returns 21

 print (“ My name is ” + myName)

 print (“ My age is ” + myAge)

 }

 Things to note here:

 ● Each variable and function we used was a member of the me instance, which is an
 instance of the Person class, so it has all of the variables and functions of that class

 13

 V. Data Structures
 Data structures are what we use to store data . Aside from the variables we’ve discussed
 which are used to store single pieces of data, a structure is able to store multiple variables as a
 “collection”. Di�erent data structures may come in handy for di�erent jobs, but typically you’ll
 want to have a �rm understanding of these key structures below:

 Array

 Arrays are considered the most basic and fundamental of all data structures because they are
 a linear collection of values that are [usually] of the same type .

 Let’s say a professor is grading �nal exams and wants to run some analyses on the test scores
 they gathered (i.e. �nding the mean or median score). They would probably want to �rst get all
 of these values together in some list like so:

 // An array of test scores

 var scores = [99 , 68 , 61 , 88 , 92 , 80 , 77] // fill the array with values

 Things to note here:

 ● All of the values in the array are of the same type, which in this case we can probably
 assume to be integers based on their values

 Length / Size

 Arrays also have special properties that can tell us more about the array once it's been
 created. For example, every array has a length property that when invoked, returns the length
 of that speci�c array.

 Using our earlier example with the test scores, we could do something like the following to �nd
 out the size of this speci�c array:

 var arraySize = scores.length // returns 7

 Indexing

 Arrays also have indices, which are essentially just positions in the array . At each position of
 an array, there will either be a value (if we have speci�ed a value) or a default value like 0 or
 null (depending on the programming language and data type that the array is storing).

 Indices become super important when iterating through an array, because it allows us to
 directly access elements of the array, like so:

 14

 var scores = [99 , 68 , 61 , 88 , 92 , 80 , 77]

 scores[0] // returns 99

 scores[1] // returns 68

 …

 scores[6] // returns 77

 The bracket [] syntax is appended to the end of the array’s name which indicates we want to
 get the value of that array at a speci�c index, starting with 0 .

 When we draw these things out, normally we make one, contiguous block , divided into
 sections representing each index. This is to emphasize that an array is one space in the
 machine’s memory, but within itself, it holds multiple values:

 scores

 Value 99 68 61 88 92 80 77

 Index 0 1 2 3 4 5 6

 More about arrays here .

 List / ArrayList
 Now moving on to Lists or ArrayLists. These are extremely similar to arrays, except in
 languages like Python we get the option of storing values of all di�erent types, together.
 Without ge�ing too much into language-speci�c detail, another advantage of the ArrayList
 compared to the array is that arrays are o�en of a �xed length , whereas an ArrayList is
 dynamic and can be of any size (as long as the machine has enough memory to store the
 values).

 BTW, the fact that a List can store di�erent types is exclusive to some languages; this is not
 the case in languages like Java or C++ . In the strictly-typed languages, we must tell the
 compiler what type all of our elements will be, and if we do not honor that, the compiler won’t
 be able to understand the code.

 To connect the dots from some of the previous concepts we’ve covered, an ArrayList is just a
 class that has some variables and functions that programmers use to hold their data in one
 place.

 15

https://www.youtube.com/watch?v=OnPP5xDmFv0

 In a nutshell, the class for an ArrayList looks something like:

 class ArrayList {

 /** Member variables */

 var size: Int

 …

 /** Member functions */

 // Adds the input element to the ArrayList

 fun add (...) { … }

 // Removes the input element from the ArrayList

 fun remove (..) { … }

 // Returns the size of the ArrayList

 fun size (): Int { return size }

 …

 }

 In which there are member variables and functions that can tell us the size, what elements are
 in the structure, if the structure is empty, and much more. See the full class implementation.

 Let’s try creating a List/ArrayList in Java 8 :

 Test.java :

 class Test {

 // Create a List / ArrayList of integers

 List<Integer> list = new ArrayList<Integer>();

 // Add our values to the list

 list. add (99);

 list. add (80);

 …

 list. add (77);

 }

 16

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

 Things to note here:

 ● The List declares that all of its elements will be of a speci�c type (Integer)

 ● A Java ArrayList must add its elements one by one (unless you do something fancy to
 add multiple elements at once which is beyond the scope of this lesson!)

 Set / HashSet

 A Set is much much like a List or array, except it does not store duplicates . Using the example
 of the professor and the test scores, we know this would be a bad time to use a Set , because
 we could de�nitely expect duplicate test scores for students in a class. The chances of 2
 students ge�ing the same �nal exam score is pre�y high, so we would be much safer using a
 List in this case, or at least something that allows duplicates.

 However, there are de�nitely cases where a Set would be more appropriate, such as dealing
 with unique objects or values.

 De�ning a set in Python 3 :

 mySet = set ([1 , 2 , 2])

 print (mySet) // prints {1, 2} because the duplicate 2 is disregarded

 More about sets here .

 Dictionary / HashMap

 Dictionaries are my personal favorite. They are structures made speci�cally for pairing. The
 way it pairs is using a key-value system, where the keys are unique and all have
 corresponding values (that don’t have to be unique). This would be a perfect structure to use
 for students’ test scores, perhaps if we use the student’s name as a key and their �nal exam
 score as a value.

 In theory, a mapping of test scores would look something like this, where each String (student
 name) has its own associated value (Integer test score):

 {

 “John” : 99 ,

 “Hether” : 80 ,

 “Matthew” : 61 ,

 …

 “Chris” : 77 ,

 }

 17

https://www.geeksforgeeks.org/sets-in-python/

 In Python 3 we could literally just copy the theoretical code above and assign it to a variable:

 scoreMap = {

 “John” : 99,

 “Hether” : 80,

 “Matthew” : 61,

 …

 “Chris” : 77,

 }

 In Java 8 :

 HashMap< String , Integer > scoreMap = new HashMap< String , Integer >();

 scoreMap.put(“John”, 99);

 scoreMap.put(“Hether”, 80);

 …

 scoreMap.put(“Chris”, 77);

 Things to note here:

 ● Just like ArrayList in Java, we must add the elements one by one 😣 (again, unless we
 use some fancy logic which is beyond the scope of this lesson)

 When it comes time to retrieve elements from a dictionary or HashMap, we always need the
 key . Much like how we tell an array which index to give us a value for, we use the same
 approach here, instead we pass the key.

 Here’s how we can retrieve elements from the structure using the key in Python :

 scoreMap [“John”] // returns 99

 scoreMap [“Hether”] // returns 80

 …

 scoreMap [“Chris”] // returns 77

 scoreMap [“Unknown”] // throws a KeyError

 18

 And in Java :

 scoreMap. get (“John”); // returns 99

 scoreMap. get (“Hether”); // returns 80

 …

 scoreMap. get (“Chris”); // returns 77

 scoreMap. get (“Unknown”); // throws an Exception

 Things to note here:

 ● When an invalid key (i.e. a key that was never added to the dictionary) is passed as a
 parameter, the interpreter or compiler will throw an error and the code will not run

 More about Dictionaries / HashMaps here .

 VI. Algorithms
 Here we’ll touch on some of the most common types of algorithms. An algorithm isn’t
 necessarily something super complex that requires a bunch of math or headaches. An
 algorithm can be simple, as it’s really just a procedure used for solving a problem or performing
 a computation [1].

 Conditionals

 Conditional statements are our way to tell the machine to do one thing if a certain condition is
 true, or to perhaps do something else if it is false.

 This is generally done using the if keyword followed by a condition (which is normally
 wrapped in parentheses). An example of a valid if-statement would be:

 if (300 > 200) { doSomething() }

 In which we know 300 is greater than 200, so we would expect the function doSomething() to
 be called. If this ever evaluates to false though like we’ll see in later examples, the logic within
 the parentheses would never execute because it is conditional and only evalues when the
 speci�ed condition is true .

 Let’s say the professor from our earlier example is determining passing or failure statuses for
 students based on the median test score. If the median is below 70, the professor will pass all
 students. If the median is above 70, everyone passes:

 19

https://www.youtube.com/watch?v=sfWyugl4JWA

 // An array or list of scores

 var scores = [99 , 68 , 61 , 88 , 92 , 80 , 77]

 // Let’s call some function that gets the median of all of the scores we

 // have.

 var median = getMedian(scores)

 // Let’s check if the median we got is greater than or equal to 70.

 if (median >= 70) {

 // everyone passes!

 } else {

 // everyone fails!

 }

 Things to note here:

 ● We have an if-else clause; the if -statement is where we add our condition, and in
 case that is ever false , we have an else clause that will be executed as a default case

 ● Only one part of the conditional statement will actually execute; either the median is
 greater than or equal to 70, or it is not

 ○ Based on what that condition evaluates to, the code will only hit one of the
 paths

 Looping

 Another common type of algorithm you need to know is looping . This is essentially how we
 iterate over some collection of data which allows us to do hundreds of other things, like run
 analyses on it. There are a few di�erent types of loops, so we’ll go through each type below.

 1. For-loop

 The for-loop is the most fundamental loop we have; it exists in pre�y much every
 programming language. Loops are used for iterating over some collection of data (i.e. a data
 structure) to view or manipulate its elements.

 Taking the same professor example with the test scores, let’s say we wanted to iterate over the
 array of scores and check if there is an 88 in the list. In order to do so, we would need to start
 from the beginning of the list and check each element (in order) to see if it is an 88 :

 20

 // This is how we create a for-loop

 for (int i = 0 ; i < scores.length; i++) {

 // Check the element in the array at index i; if

 // it equals 88, do something below

 if (scores[i] == 88) {

 // if we found an 88, print that we found an 88.

 print(“we found an 88 !”)

 } // end if-statement

 } // end for-loop

 The for-loop has three (3) main parts in its header: the index, a condition for when to stop the
 loop, and how we want to handle each iteration. Let me explain…

 1a. The index:

 for (int i = 0 , …, …) { … }

 As discussed earlier, the index of the array is important because it is a numeric value that tells
 us where we are in traversing this array. For example, if you read the list of [99, 68, 61, 88,
 92, 80, 77] from le� to right, 99 would be the �rst element, which makes it index 0 . 68 is the
 second element, so its index is 1 . This continues until the end of the list. So, i is what we use in
 our loop to keep track of whether we’re currently at index 0 , index 1 , …, index 6 .

 1b. A condition for when to stop:

 for (..., i < scores.length , …) { … }

 Here, we have i < scores.length . With for-loops, the loop will iterate and continue until this
 condition becomes false . So, in our case, the condition is basically saying, “Let’s continue
 iterating over this list only while the value of i is less than that of scores.length” .

 1c. How to handle the end of each iteration:

 for (..., …, i++) { … }

 Here, the i++ just means, a�er every iteration, “do i++ ” . i++ in particular means, “add 1 to i ” .
 So if i is currently 0, a�er the iteration it would bump to 1, then 2, so on and so forth until we
 reach the number of iterations we set for the loop in part 1b.

 21

 2. For-each loop

 Don’t worry, loops get easier from here. A for-each loop typically does the same thing as a
 for-loop, except it is simpli�ed in the sense that you don’t have to tell it what to do with all of
 the things we discussed in the header. All a for-each loop needs to know is (1) what collection
 of data it should be iterating through, (2) the type of data that collection consists of, and (3),
 what to call each element, since it won’t be indexed using i like a for-loop. Let’s examine that...

 Using the same example with the scores, we could use a for-each to iterate over the same
 scores, but in a friendlier way:

 var scores = [99 , 68 , 61 , 88 , 92 , 80 , 77]

 // This is how we create a for-each loop

 for (int score : scores) {

 // Check if the current element is an 88.

 if (score == 88) {

 // if we found an 88, print that we found an 88.

 print (“We found an 88 !”)

 } // end if-statement

 } // end for-each loop

 The header for a for-each loop normally reads just like plain English; the loop we implemented
 would read something like, “For each integer called score in scores” , meaning scores is the
 collection of values and each element within the collection will be called score when we get to
 its speci�c position.

 3. While-loop

 If you made it this far, you can catch a breather with while loops. A while loop is a type of loop
 that continues while the speci�ed condition is true . You have to be careful with these though
 because if your condition never ends up being false , it will never stop and typically crashes
 the code.

 Let’s use a while loop to �nd out if there’s an 88 in the list:

 22

 var count: Int = 0

 var found: Boolean = false

 while (found != true) { // “while found is not true”

 // Check if the current element is an 88.

 if (scores[count] == 88) {

 // if we found an 88, print that we found an 88.

 print (“We found an 88 !”)

 found = true // update the value since we found the 88.

 } // end if-statement

 // Otherwise, we haven’t found the 88, so let’s keep looking

 else {

 count += 1 // increment the counter

 } // end else

 } // end while-loop

 Things to note here:

 ● We ended up having to do more work than we wanted to when using the while-loop
 because we needed to (1) keep track of the index to check the value at each index and
 (2) have some way of breaking out of the loop; using a while loop is not e�cient for this
 job

 ● In the event that there was no 88 in the array, this while-loop would continue on forever,
 and then crash the machine because the condition we set never became true

 E�ciency
 “Algorithm E�ciency” is a term you’ll hear a bunch about once data structures start being
 introduced and used. The idea is that every data structure was though�ully created with a
 unique purpose and functionality that gives it an edge over its competitors. Based on the data
 we’re storing and planning to access, we must choose a structure that suits our speci�c needs,
 making it the most e�cient for the job.

 For example, technically we could use a fork to eat cereal, there’s nothing stopping us, but we
 know it wouldn’t be the most e�cient tool for this speci�c job. In computing, we measure how
 e�cient an algorithm is using something called “Big-O Notation”.

 23

 This notation is a mathematical notation that helps us to understand one important concept:
 for a speci�c input and algorithm, how fast can a machine (on average) compute an output?

 The easiest way to think about “e�ciency” is probably by thinking about how much work the
 machine has to do, and how long it is expected to take. If a machine has to do li�le to no work
 to solve our problem, we generally consider this a very e�cient algorithm. On the contrary, if
 our machine needs, let’s say 30 minutes to an hour to �nally solve our problem, this is likely a
 very ine�cient algorithm that needs some work.

 The caveat here is we don’t actually describe an algorithm’s e�ciency using time since time is
 relative and depends on a bunch of other things, so we use Big-O as a general way of
 describing the algorithm’s workload, which tells us how many actions the machine will need to
 perform (at the worst case) to reach a result.

 Here’s a breakdown of how we classify algorithms in terms of e�ciency when our input (N) is N
 = 10 (10 in this case signi�es our input is of length 10):

 Name Notation Rating Evaluation
 (# of steps)

 1. Constant O(1) Excellent O(1) = 1

 2. Logarithmic O(logN) Excellent O(logN) = log(10) = 1

 3. Linear O(N) Fair O(N) = O(10) = 10

 4. Loglinear O(NlogN) Bad O(NlogN) = 10log(10) = 10

 5. Quadratic O(N 2) Horrible O(N 2) = 10 2 = 100

 6. Exponential O(2 n), c > 1 Pre�y Horrible O(2 n) = 2 10 = 1024

 7. Factorial O(n!) Super Horrible O(n!) = 10! = 3628800

 Things to note here:

 ● If our input is of 10 elements (hence N = 10), the best algorithms will allow us to �nd a
 result with 10 steps or be�er

 ● The values we get in the ‘Evaluation’ column all vary on the size of the input; there’s a
 direct relationship between the input size and number of steps needed to complete
 the job

 ● Though constant, logarithmic and linear solutions are considered the best, they aren’t
 always available options; sometimes a job has to be done a certain way, which warrants
 the need for a slower, less ideal algorithm

 24

 The below illustration [2] shows a graphical representation of what we just covered, but shows
 how the number of operations is a function of the number of elements.

 Without ge�ing too mathy, just try to focus on the colors and what they mean, and the shape
 of each trend line:

 We can see that for algorithms like constant (O(1)) and logarithmic (O(logN)), no ma�er how
 large the ‘Elements’ axis grows, the ‘Operations’ axis always stays extremely low; this means no
 ma�er how large our input size is, the algorithm will always be super e�cient.

 On the other hand, let’s look toward the red area. We can see, for example, O(N 2) has a steep,
 upwards curve. This means that as the number of elements grows, the number of operations is
 heavily impacted and grows too. We can see this in the chart from earlier, that O(N 2) when N =
 10 puts us at 100 operations. This isn’t extremely bad for a smaller input like N = 10 , but try to
 imagine if our input was N = 100 . We’d then have O(100 2), which puts us now at 10,000
 operations (at the worst case).

 25

 Best vs Worst case

 If I were you I’d probably be wondering why we keep saying “at the worst case”. We say this to
 emphasize the fact that an algorithm’s e�ciency can technically be pre�y good like O(1), but
 it’ll also have cases where it slips severely and becomes something like O(N).

 Let’s look at an example with some code to make this make sense. I know you’re probably tired
 of the scores example, but it’s about to make everything make sense right here (hopefully).
 Let’s say we have the same list of scores, right, and we have some code that uses a for-each
 loop to �nd out if there’s a 99 in the list:

 var scores = [99 , 68 , 61 , 88 , 92 , 80 , 77]

 // A for-each loop that looks for any occurrence of 99.

 for (int score : scores) {

 if (score == 99) {

 print (“we found 99 !”)

 }

 }

 Our input size for this algorithm is the length of our array, which is currently 7 (i.e. there are 7
 elements in the collection). Let’s analyze that here:

 Best Case Worst Case

 Explanation In the best case , 99 is the �rst element
 in the collection, meaning we �nd it
 right away and don’t have to visit any
 other positions in the array to �nd it

 (1 step total)

 In the worst case , 99 is the last
 element in the collection (or doesn’t
 appear at all), meaning we just
 looked at every single element in
 the collection

 (7 steps total)

 Big-O Constant, O(1) = 1 Linear, O(N) = 7

 Things to note here:

 ● The same algorithm (known as a linear search) in the worst case is O(N) where N is the
 number of input elements, but in the best case is always O(1)

 More about algorithm e�ciency here .

 26

https://www.khanacademy.org/computing/ap-computer-science-principles/algorithms-101/evaluating-algorithms/a/comparing-run-time-efficiency

 VII. Ge�ing Started with Projects
 One of the keys to preparing for a career in tech is to have as much technical experience as
 possible. You don’t necessarily need to learn a bunch of languages and work in multiple areas,
 but you’ll want to get pro�cient in at least one area and use that as a foundation.

 GitHub

 As a beginner, you’ll need to create a GitHub account, which is a free, online resource that
 stores all of your code. The code can be app code, website code, random code, even �les like
 images and PDFs. The purpose though is to build a por�olio of projects that can be found and
 viewed in one place (recruiters typically want to see a GitHub link on your résumé).

 Collaboration

 GitHub is also known for its collaborative features that allow engineers to contribute to
 projects individually, but as part of one project. Typically each engineer will create a “branch”,
 stemming from the source of the code (main / master branch) which serves as like a personal
 workspace.

 Let’s observe the following diagram:

 Notice that the main branch is the central branch that all of the sub branches communicate
 with. The three sub branches, user1-dev , user2-dev and user3-dev represent three
 engineers who are all developing and contributing to the same project, which is stored in the
 main branch.

 Once one engineer wants to add some new code, they’ll add it �rst to their branch, then
 “push” it to the main branch. Once it gets pushed, all of the other users in their branches can
 “sync” or “pull” in those new changes.

 More on GitHub here .

 27

http://github.com/
https://www.youtube.com/watch?v=iv8rSLsi1xo

 VIII. Guided Practice
 Here we’ll go over some quick steps to get started with actual hands-on programming. We
 won’t be going over any speci�c coding exercises to do, but these steps will help us create an
 environment where we can work on some beginner projects and

 Download an IDE [JGrasp]

 An Integrated Development Environment (IDE) is what most developers write their code in, and
 do things like run the code and debug it. We’ll download JGrasp because its interface is very
 simplistic and it has all the tools we need, by default, as it was originally developed for
 academia.

 Commit to a language [Java]

 Remember, in programming, we have both static and dynamic languages, which are very
 di�erent and have unique advantages and disadvantages. You’ll likely want to choose between
 Java and Python as a “�rst language” and start from there.

 Personally, I recommend starting with Java .

 Create a new program

 1. Creating a new �le

 Open JGrasp and go to File > New > Other, and choose your language .

 2. Saving the �le

 A�er we get a fresh, clean environment to work in, we’ll want to save this �le so that JGrasp
 knows exactly where to save all of the code on our machine. Go to File > Save As , and �nd a
 suitable directory on your machine to save the �le in (eg. a folder titled SSF Coding
 Practice).

 If coding in Java you must name your �le with the .java extension (eg. Main.java)
 If coding in Python, you must name your �le with the .py extension (eg. Main.py)

 Start Coding!

 For a �rst program, we’ll just focus on reinforcing some of the fundamental concepts we
 learned throughout the guide. Here’s a great video we can follow along with to get a Java
 program going: Intro to Java using JGrasp

 28

https://spider.eng.auburn.edu/user-cgi/grasp/grasp.pl?;dl=download_jgrasp.html
https://www.youtube.com/watch?v=QyaT2IhFvzc

 IX. Links & Resources
 Here we have a compilation of some beginner’s resources to help us get started with
 programming in di�erent aspects.

 General
 ● CS Dojo on Youtube : teaches the basics in a very beginner-friendly way
 ● W3Schools : web tutorials, online bootcamp, free general programming resources
 ● Khan Academy : free online course for into-level programming

 Command Line / Terminal
 ● Compiling Java : tutorial on how to manipulate �les and run a Java program from the

 terminal
 ● Running Python : tutorial on how to run a Python program from the terminal

 App Development
 ● Mobile Android App : tutorial on how to create a simple Android app with Android Studio
 ● Mobile iOS App : tutorial on how to create a simple iOS app with XCode
 ● Online Game : 12-hour livestream of engineer coding an online game
 ● Mini Python Projects : tutorial on how to create di�erent Python projects for beginners

 Arti�cial Intelligence (AI)
 ● Image Recognition : recognizing images of numbers on Youtube with MNist dataset
 ● Creating a Neural Network from Scratch : tutorial on how to create a neural network in

 Python

 Hardware Engineering / Robotics
 ● Python Programming for Raspberry Pi Robot : engineer writing code to program a robot

 using a Raspberry Pi

 Cybersecurity
 ● Track Phone Number’s Location : tutorial on how to create a Python program that tracks

 the location of a phone number (not precise locations, lol)

 Interview-based Practice
 ● CodingBat.com – beginner’s coding exercises; you can switch between Java and

 Python and there are di�erent levels
 ● Leetcode.com – more advanced exercises than codingbat, can use any language you

 prefer

 29

https://www.youtube.com/@CSDojo
https://www.w3schools.com/
https://www.khanacademy.org/computing/computer-science
https://www.youtube.com/watch?v=uA4eQbC3JgA
https://www.youtube.com/watch?v=8mSpxFU5YFg
https://www.youtube.com/watch?v=BBWyXo-3JGQ
https://www.youtube.com/watch?v=yuo50-TiKgo
https://www.youtube.com/watch?v=wDIQ17T3sRk
https://www.youtube.com/watch?v=DLn3jOsNRVE
https://www.youtube.com/watch?v=wQ8BIBpya2k
https://www.youtube.com/watch?v=w8yWXqWQYmU
https://www.youtube.com/watch?v=N3jwEVbZyXY&list=PLU9tksFlQRiqsGOk-jl_5ID-Z1v6pQ8Fp
https://www.youtube.com/watch?v=uuflFk_LQ-E
http://codingbat.com/
https://leetcode.com/

 X. Works Cited

 [1.] TechTarget (n.d.). What is an Algorithm? WhatIs.com. Retrieved May 28, 2023, from
 h�ps://www.techtarget.com/whatis/de�nition/algorithm#:~:text=An%20algorithm%20is
 %20a%20procedure,throughout%20all%20areas%20of%20IT .

 [2.] Huang, S. (2020, January 16). What is Big O Notation Explained: Space and Time
 Complexity? FreeCodeCamp. Retrieved May 28, 2023, from
 h�ps://www.freecodecamp.org/news/big-o-notation-why-it-ma�ers-and-why-it-does
 nt-1674cfa8a23c/

 30

https://www.techtarget.com/whatis/definition/algorithm#:~:text=An%20algorithm%20is%20a%20procedure,throughout%20all%20areas%20of%20IT
https://www.techtarget.com/whatis/definition/algorithm#:~:text=An%20algorithm%20is%20a%20procedure,throughout%20all%20areas%20of%20IT
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/

